Orthogonal projection
inside Petrie polygon
TypeRegular 8-polytope
Schläfli symbol {36,4}
Coxeter-Dynkin diagrams
7-faces256 {36}
6-faces1024 {35}
5-faces1792 {34}
4-faces1792 {33}
Cells1120 {3,3}
Faces448 {3}
Vertex figure7-orthoplex
Petrie polygonhexadecagon
Coxeter groupsC8, [36,4]
D8, [35,1,1]

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

It has two constructive forms, the first being regular with Schläfli symbol {36,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,3,31,1} or Coxeter symbol 511.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is an 8-hypercube, or octeract.

Alternate names


There are two Coxeter groups associated with the 8-cube, one regular, dual of the octeract with the C8 or [4,3,3,3,3,3,3] symmetry group, and a half symmetry with two copies of 7-simplex facets, alternating, with the D8 or [35,1,1] symmetry group.A lowest symmetry construction is based on a dual of an 8-orthotope, called an 8-fusil.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure
regular 8-orthoplex {3,3,3,3,3,3,4} [3,3,3,3,3,3,4]10321920
Alternate 8-orthoplex {3,3,3,3,3,31,1} [3,3,3,3,3,31,1]5160960
8-fusil 8{} [27]256

Cartesian coordinates

Cartesian coordinates for the vertices of an 8-cube, centered at the origin are

(±1,0,0,0,0,0,0,0), (0,±1,0,0,0,0,0,0), (0,0,±1,0,0,0,0,0), (0,0,0,±1,0,0,0,0),
(0,0,0,0,±1,0,0,0), (0,0,0,0,0,±1,0,0), (0,0,0,0,0,0,0,±1), (0,0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.


orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

It is used in its alternated form 511 with the 8-simplex to form the 521 honeycomb.


External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 1/27/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.