Rectified 10-simplexes


10-simplex

Rectified 10-simplex

Birectified 10-simplex

Trirectified 10-simplex

Quadrirectified 10-simplex
Orthogonal projections in A9 Coxeter plane

In ten-dimensional geometry, a rectified 10-simplex is a convex uniform 10-polytope, being a rectification of the regular 10-simplex.

These polytopes are part of a family of 527 uniform 10-polytopes with A10 symmetry.

There are unique 5 degrees of rectifications including the zeroth, the 10-simplex itself. Vertices of the rectified 10-simplex are located at the edge-centers of the 10-simplex. Vertices of the birectified 10-simplex are located in the triangular face centers of the 10-simplex. Vertices of the trirectified 10-simplex are located in the tetrahedral cell centers of the 10-simplex. Vertices of the quadrirectified 10-simplex are located in the 5-cell centers of the 10-simplex.

Rectified 10-simplex

Rectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t1{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
9-faces22
8-faces165
7-faces660
6-faces1650
5-faces2772
4-faces3234
Cells2640
Faces1485
Edges495
Vertices55
Vertex figure9-simplex prism
Petrie polygondecagon
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

The rectified 10-simplex is the vertex figure of the 11-demicube.

Alternate names

Coordinates

The Cartesian coordinates of the vertices of the rectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 11-orthoplex.

Images

orthographic projections
Ak Coxeter plane A10 A9 A8
Graph
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Birectified 10-simplex

Birectified 10-simplex
Typeuniform 9-polytope
Schläfli symbol t2{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges1980
Vertices165
Vertex figure{3}x{3,3,3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The Cartesian coordinates of the vertices of the birectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 11-orthoplex.

Images

orthographic projections
Ak Coxeter plane A10 A9 A8
Graph
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Trirectified 10-simplex

Trirectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t3{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges4620
Vertices330
Vertex figure{3,3}x{3,3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The Cartesian coordinates of the vertices of the trirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,1,1,1,1). This construction is based on facets of the triirectified 11-orthoplex.

Images

orthographic projections
Ak Coxeter plane A10 A9 A8
Graph
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Quadrirectified 10-simplex

Quadrirectified 10-simplex
Typeuniform polyxennon
Schläfli symbol t4{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
8-faces
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges6930
Vertices462
Vertex figure{3,3,3}x{3,3,3,3}
Coxeter groupsA10, [3,3,3,3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The Cartesian coordinates of the vertices of the quadrirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,1,1,1,1,1). This construction is based on facets of the quadrirectified 11-orthoplex.

Images

orthographic projections
Ak Coxeter plane A10 A9 A8
Graph
Dihedral symmetry [11] [10] [9]
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Notes

  1. Klitzing, (o3x3o3o3o3o3o3o3o3o - ru)
  2. Klitzing, (o3o3x3o3o3o3o3o3o3o - bru)
  3. Klitzing, (o3o3o3x3o3o3o3o3o3o - tru)
  4. Klitzing, (o3o3o3o3x3o3o3o3o3o - teru)

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 2/23/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.