1 22 polytope


122

Rectified 122

Birectified 122

221

Rectified 221
orthogonal projections in E6 Coxeter plane

In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).[1]

Its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, construcated by positions points on the elements of 122. The rectified 122 is constructed by points at the mid-edges of the 122. The birectified 122 is constructed by points at the triangle face centers of the 122.

These polytopes are from a family of 39 convex uniform polytopes in 6-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

1_22 polytope

122 polytope
TypeUniform 6-polytope
Family1k2 polytope
Schläfli symbol {3,32,2}
Coxeter symbol 122
Coxeter-Dynkin diagram or
5-faces54:
27 121
27 121
4-faces702:
270 111
432 120
Cells2160:
1080 110
1080 {3,3}
Faces2160 {3}
Edges720
Vertices72
Vertex figureBirectified 5-simplex:
022
Petrie polygonDodecagon
Coxeter groupE6, [[3,3<sup>2,2</sup>]], order 103680
Propertiesconvex, isotopic

The 1_22 polytope contains 72 vertices, and 54 5-demicubic facets. It has a birectified 5-simplex vertex figure. Its 72 vertices represent the root vectors of the simple Lie group E6.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 6 hyperplane mirrors in 6-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram, .

Removing the node on either of 2-length branches leaves the 5-demicube, 131, .

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 5-simplex, 022, .

Images

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]

(1,2)

(1,3)

(1,9,12)
B6
[12/2]
A5
[6]
A4
5 = [10]
A3 / D3
[4]

(1,2)

(2,3,6)

(1,2)

(1,6,8,12)

Related complex polyhedron

Orthographic projection in Aut(E6) Coxeter plane with 18-gonal symmetry for complex polyhedron, 3{3}3{4}2. It has 72 vertices, 216 3-edges, and 54 3{3}3 faces.

The regular complex polyhedron 3{3}3{4}2, , in has a real representation as the 122 polytope in 4-dimensional space. It has 72 vertices, 216 3-edges, and 54 3{3}3 faces. Its complex reflection group is 3[3]3[4]2, order 1296. It has a half-symmetry quasiregular construction as , as a rectification of the Hessian polyhedron, .[3]

Related polytopes and honeycomb

Along with the semiregular polytope, 221, it is also one of a family of 39 convex uniform polytopes in 6-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .

Geometric folding

The 122 is related to the 24-cell by a geometric folding E6 → F4 of Coxeter-Dynkin diagrams, E6 corresponding to 122 in 6 dimensions, F4 to the 24-cell in 4 dimensions. This can be seen in the Coxeter plane projections. The 24 vertices of the 24-cell are projected in the same two rings as seen in the 122.

E6/F4 Coxeter planes

122

24-cell
D4/B4 Coxeter planes

122

24-cell

Tessellations

This polytope is the vertex figure for a uniform tessellation of 6-dimensional space, 222, .

Rectified 1_22 polytope

Rectified 122
TypeUniform 6-polytope
Schläfli symbol 2r{3,3,32,1}
r{3,32,2}
Coxeter symbol 0221
Coxeter-Dynkin diagram
or
5-faces126
4-faces1566
Cells6480
Faces6480
Edges6480
Vertices720
Vertex figure3-3 duoprism prism
Petrie polygonDodecagon
Coxeter groupE6, [[3,3<sup>2,2</sup>]], order 103680
Propertiesconvex

The rectified 122 polytope (also called 0221) can tessellate 6-dimensional space as the Voronoi cell of the E6* honeycomb lattice (dual of E6 lattice).[4]

Alternate names

Construction

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: .

Removing the ring on the short branch leaves the birectified 5-simplex, .

Removing the ring on the either 2-length branch leaves the birectified 5-orthoplex in its alternated form: t2(211), .

The vertex figure is determined by removing the ringed node and ringing the neighboring ring. This makes 3-3 duoprism prism, {3}×{3}×{}, .

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
A5
[6]
A4
[5]
A3 / D3
[4]

Truncated 1_22 polytope

Truncated 122
TypeUniform 6-polytope
Schläfli symbol t{3,32,2}
Coxeter symbol t(122)
Coxeter-Dynkin diagram
or
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
Petrie polygonDodecagon
Coxeter groupE6, [[3,3<sup>2,2</sup>]], order 103680
Propertiesconvex

Alternate names

Construction

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: .

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
A5
[6]
A4
[5]
A3 / D3
[4]

Birectified 1_22 polytope

Birectified 122 polytope
TypeUniform 6-polytope
Schläfli symbol 2r{3,32,2}
Coxeter symbol 2r(122)
Coxeter-Dynkin diagram
or
5-faces126
4-faces2286
Cells10800
Faces19440
Edges12960
Vertices2160
Vertex figure
Coxeter groupE6, [[3,3<sup>2,2</sup>]], order 103680
Propertiesconvex

Alternate names

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
A5
[6]
A4
[5]
A3 / D3
[4]

Trirectified 1_22 polytope

Trirectified 122 polytope
TypeUniform 6-polytope
Schläfli symbol 3r{3,32,2}
Coxeter symbol 3r(122)
Coxeter-Dynkin diagram
or
5-faces558
4-faces4608
Cells8640
Faces6480
Edges2160
Vertices270
Vertex figure
Coxeter groupE6, [[3,3<sup>2,2</sup>]], order 103680
Propertiesconvex

Alternate names


See also

Notes

  1. Elte, 1912
  2. Klitzing, (o3o3o3o3o *c3x - mo)
  3. Coxeter, H. S. M., Regular Complex Polytopes, second edition, Cambridge University Press, (1991). p.30 and p.47
  4. The Voronoi Cells of the E6* and E7* Lattices, Edward Pervin
  5. Klitzing, (o3o3x3o3o *c3o - ram)
  6. Klitzing, (o3x3o3x3o *c3o - barm)
  7. Klitzing, (x3o3o3o3x *c3o - trim)

References

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 10/24/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.