Rectified 8-orthoplexes


8-orthoplex

Rectified 8-orthoplex

Birectified 8-orthoplex

Trirectified 8-orthoplex

Trirectified 8-cube

Birectified 8-cube

Rectified 8-cube

8-cube
Orthogonal projections in A8 Coxeter plane

In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex.

There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being the 8-cube. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the tetrahedral cell centers of the 8-orthoplex.

Rectified 8-orthoplex

Rectified 8-orthoplex
Typeuniform 8-polytope
Schläfli symbol t1{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces272
6-faces3072
5-faces8960
4-faces12544
Cells10080
Faces4928
Edges1344
Vertices112
Vertex figure6-orthoplex prism
Petrie polygonhexakaidecagon
Coxeter groupsC8, [4,36]
D8, [35,1,1]
Propertiesconvex

The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the simple Lie group D8. The vertices can be seen in 3 hyperplanes, with the 28 vertices rectified 7-simplexs cells on opposite sides, and 56 vertices of an expanded 7-simplex passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B8 and C8 simple Lie groups.

Related polytopes

The rectified 8-orthoplex is the vertex figure for the demiocteractic honeycomb.

or

Alternate names

Construction

There are two Coxeter groups associated with the rectified 8-orthoplex, one with the C8 or [4,36] Coxeter group, and a lower symmetry with two copies of heptcross facets, alternating, with the D8 or [35,1,1] Coxeter group.

Cartesian coordinates

Cartesian coordinates for the vertices of a rectified 8-orthoplex, centered at the origin, edge length are all permutations of:

(±1,±1,0,0,0,0,0,0)

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Birectified 8-orthoplex

Birectified 8-orthoplex
Typeuniform 8-polytope
Schläfli symbol t2{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces272
6-faces3184
5-faces16128
4-faces34048
Cells36960
Faces22400
Edges6720
Vertices448
Vertex figure{3,3,3,4}x{3}
Coxeter groupsC8, [3,3,3,3,3,3,4]
D8, [35,1,1]
Propertiesconvex

Alternate names

Cartesian coordinates

Cartesian coordinates for the vertices of a birectified 8-orthoplex, centered at the origin, edge length are all permutations of:

(±1,±1,±1,0,0,0,0,0)

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Trirectified 8-orthoplex

Trirectified 8-orthoplex
Typeuniform 8-polytope
Schläfli symbol t3{3,3,3,3,3,3,4}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure{3,3,4}x{3,3}
Coxeter groupsC8, [3,3,3,3,3,3,4]
D8, [35,1,1]
Propertiesconvex

The trirectified 8-orthoplex can tessellate space in the quadrirectified 8-cubic honeycomb.

Alternate names

Cartesian coordinates

Cartesian coordinates for the vertices of a trirectified 8-orthoplex, centered at the origin, edge length are all permutations of:

(±1,±1,±1,±1,0,0,0,0)

Images

orthographic projections
B8 B7
[16] [14]
B6 B5
[12] [10]
B4 B3 B2
[8] [6] [4]
A7 A5 A3
[8] [6] [4]

Notes

  1. Klitzing, (o3x3o3o3o3o3o4o - rek)
  2. Klitzing, (o3o3x3o3o3o3o4o - bark)
  3. Klitzing, (o3o3o3x3o3o3o4o - tark)

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 6/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.