Heptellated 8-simplexes


8-simplex

Heptellated 8-simplex

Heptihexipentisteriruncicantitruncated 8-simplex
(Omnitruncated 8-simplex)
Orthogonal projections in A8 Coxeter plane (A7 for omnitruncation)

In eight-dimensional geometry, a heptellated 8-simplex is a convex uniform 8-polytope, including 7th-order truncations (heptellation) from the regular 8-simplex.

There are 35 unique heptellations for the 8-simplex, including all permutations of runcations, cantellations, runcinations, sterications, pentellations, and hexications. The simplest heptellated 8-simplex is also called an expanded 8-simplex, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 8-simplex. The highest form, the heptihexipentisteriruncicantitruncated 8-simplex is more simply called a omnitruncated 8-simplex with all of the nodes ringed.

Heptellated 8-simplex

Heptellated 8-simplex
Typeuniform 8-polytope
Schläfli symbol t0,7{3,3,3,3,3,3,3}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges504
Vertices72
Vertex figure6-simplex antiprism
Coxeter groupA8×2, [[37]], order 725760
Propertiesconvex

Alternate names

Coordinates

The vertices of the heptellated 8-simplex can bepositioned in 8-space as permutations of (0,1,1,1,1,1,1,1,2). This construction is based on facets of the heptellated 9-orthoplex.

A second construction in 9-space, from the center of a rectified 9-orthoplex is given by coordinate permutations of:

(1,-1,0,0,0,0,0,0,0)

Root vectors

Its 72 vertices represent the root vectors of the simple Lie group A8.

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Omnitruncated 8-simplex

Omnitruncated 8-simplex
Typeuniform 8-polytope
Schläfli symbol t0,1,2,3,4,5,6,7{37}
Coxeter-Dynkin diagrams
7-faces
6-faces
5-faces
4-faces
Cells
Faces
Edges1451520
Vertices362880
Vertex figureirr. 7-simplex
Coxeter groupA8, [[37]], order 725760
Propertiesconvex

The symmetry order of an omnitruncated 9-simplex is 725760. The symmetry of a family of a uniform polytopes is equal to the number of vertices of the omnitruncation, being 362880 (9 factorial) in the case of the omnitruncated 8-simplex; but when the CD symbol is palindromic, the symmetry order is doubled, 725760 here, because the element corresponding to any element of the underlying 8-simplex can be exchanged with one of those corresponding to an element of its dual.

Alternate names

Coordinates

The Cartesian coordinates of the vertices of the omnitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,1,2,3,4,5,6,7,8). This construction is based on facets of the heptihexipentisteriruncicantitruncated 9-orthoplex, t0,1,2,3,4,5,6,7{37,4}

Images

orthographic projections
Ak Coxeter plane A8 A7 A6 A5
Graph
Dihedral symmetry [[9]] = [18] [8] [[7]] = [14] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] = [10] [4] [[3]] = [6]

Permutohedron and related tessellation

The omnitruncated 8-simplex is the permutohedron of order 9. The omnitruncated 8-simplex is a zonotope, the Minkowski sum of nine line segments parallel to the nine lines through the origin and the nine vertices of the 8-simplex.

Like all uniform omnitruncated n-simplices, the omnitruncated 8-simplex can tessellate space by itself, in this case 8-dimensional space with three facets around each ridge. It has Coxeter-Dynkin diagram of .

Related polytopes

This polytope is one of 135 uniform 8-polytopes with A8 symmetry.

Notes

  1. Klitzing, (x3o3o3o3o3o3o3x - soxeb)
  2. Klitzing, (x3x3x3x3x3x3x3x - goxeb)

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 9/7/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.