Cantellated 7-simplexes


7-simplex

Cantellated 7-simplex

Bicantellated 7-simplex

Tricantellated 7-simplex

Birectified 7-simplex

Cantitruncated 7-simplex

Bicantitruncated 7-simplex

Tricantitruncated 7-simplex
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.

There are unique 6 degrees of cantellation for the 7-simplex, including truncations.

Cantellated 7-simplex

Cantellated 7-simplex
Typeuniform 7-polytope
Schläfli symbol rr{3,3,3,3,3,3}
or
Coxeter-Dynkin diagram
or
6-faces
5-faces
4-faces
Cells
Faces
Edges1008
Vertices168
Vertex figure5-simplex prism
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Bicantellated 7-simplex

Bicantellated 7-simplex
Typeuniform 7-polytope
Schläfli symbol r2r{3,3,3,3,3,3}
or
Coxeter-Dynkin diagrams
or
6-faces
5-faces
4-faces
Cells
Faces
Edges2520
Vertices420
Vertex figure
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Tricantellated 7-simplex

Tricantellated 7-simplex
Typeuniform 7-polytope
Schläfli symbol r3r{3,3,3,3,3,3}
or
Coxeter-Dynkin diagrams
or
6-faces
5-faces
4-faces
Cells
Faces
Edges3360
Vertices560
Vertex figure
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Cantitruncated 7-simplex

Cantitruncated 7-simplex
Typeuniform 7-polytope
Schläfli symbol tr{3,3,3,3,3,3}
or
Coxeter-Dynkin diagrams
6-faces
5-faces
4-faces
Cells
Faces
Edges1176
Vertices336
Vertex figure
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Bicantitruncated 7-simplex

Bicantitruncated 7-simplex
Typeuniform 7-polytope
Schläfli symbol t2r{3,3,3,3,3,3}
or
Coxeter-Dynkin diagrams
or
6-faces
5-faces
4-faces
Cells
Faces
Edges2940
Vertices840
Vertex figure
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Tricantitruncated 7-simplex

Tricantitruncated 7-simplex
Typeuniform 7-polytope
Schläfli symbol t3r{3,3,3,3,3,3}
or
Coxeter-Dynkin diagrams
or
6-faces
5-faces
4-faces
Cells
Faces
Edges3920
Vertices1120
Vertex figure
Coxeter groupsA7, [3,3,3,3,3,3]
Propertiesconvex

Alternate names

Coordinates

The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

Related polytopes

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

See also

Notes

  1. Klitizing, (x3o3x3o3o3o3o - saro)
  2. Klitizing, (o3x3o3x3o3o3o - sabro)
  3. Klitizing, (o3o3x3o3x3o3o - stiroh)
  4. Klitizing, (x3x3x3o3o3o3o - garo)
  5. Klitizing, (o3x3x3x3o3o3o - gabro)
  6. Klitizing, (o3o3x3x3x3o3o - gatroh)

References

External links

Fundamental convex regular and uniform polytopes in dimensions 2–10
Family An Bn I2(p) / Dn E6 / E7 / E8 / E9 / E10 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform 4-polytope 5-cell 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia - version of the 11/30/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.